Relative Strength Index (RSI)
Function Syntax
=RSI(data, period) data(array):
Range of columns containing the date, Open, high, Low, close, volume data.period(number):
Number of periods (days) over which the RSI is calculated
Returns:
A two-column array of dates and their corresponding RSI values.
Google Sheets Output Example
Below is an example of the resulting array when applying the custom RSI() function in Google Sheets
Apps Scripts Code
Here’s the full Google Apps Script code.
Paste this directly into the Google Sheets Apps Script editor (Extensions → Apps Script):
rsi.gs
/**
* Calculates the Relative Strength Index (RSI) for a given dataset and period.
* @param {array} data - an array where the first column is the dates, and subsequent columns contain open, high, low, close, and volume.
* @param {number} period The number of periods to calculate the RSI, e.g., 14 for a 14-day RSI.
* @return {array} The RSI values along with corresponding dates.
* @customfunction
*/
function RSI(data, period) {
// Preprocess the range using getData
const processedData = getData(data);
// Check number of arguments
if (arguments.length !== RSI.length) {
throw new Error(`Wrong number of arguments. Expected ${RSI.length} arguments, but got ${arguments.length} arguments.`);
}
// Extract columns from the processed data
const dates = processedData.slice(1).map(row => row[0]); // Dates are already Date objects
const closePrices = processedData.slice(1).map(row => row[4]); // Close prices are already floats
if (period > closePrices.length) {
throw "Error: The specified period exceeds the length of the range.";
}
// Initialize arrays to store gains and losses with dates
let gains = [["Date", "Gain"]];
let losses = [["Date", "Loss"]];
// Calculate price changes and store them with corresponding dates
for (let i = 1; i < closePrices.length; i++) {
let priceChange = closePrices[i] - closePrices[i - 1];
let date = dates[i]; // Use the date corresponding to the current close price
if (priceChange > 0) {
gains.push([date, priceChange]);
losses.push([date, 0]); // Placeholder for losses
} else {
gains.push([date, 0]); // Placeholder for gains
losses.push([date, Math.abs(priceChange)]);
}
}
// Calculate average gain and average loss over the specified period using RMA
let avgGains = RMA(gains, period).slice(1); // Remove headers
let avgLosses = RMA(losses, period).slice(1); // Remove headers
// Calculate RSI values and add corresponding date
let RSIs = avgGains.map((gainRow, index) => {
let date = gainRow[0]; // Use the date from the gains array
let avgGain = gainRow[1];
let avgLoss = avgLosses[index][1];
let RS = avgLoss === 0 ? 100 : avgGain / avgLoss; // Prevent division by zero
let RSI = 100 - (100 / (1 + RS));
return [date, RSI];
});
// Prepare the final RSI data structure
return [["Date", `RSI(${period})`], ...RSIs];
}
/**
*
* @param {Array<Array>} data - A 2D array of cell values to process. The first row should contain headers.
* @returns {Array<Array>} - A 2D array where the first row contains headers and subsequent rows contain processed data.
*
* @customfunction
*
*/
function getData(data) {
if (!data || data.length === 0) {
throw new Error("Input data is empty or invalid.");
}
// Check if the first row contains headers
const headers = Array.isArray(data[0]) && data[0].every(item => typeof item === "string")
? data[0]
: null;
if (!headers) {
// If no headers, assume the first column is the date column and process data
return data.map(row => row.map((value, index) => {
return index === 0 ? new Date(value) : parseFloat(value);
}));
}
// Process rows with headers
return [headers, ...data.slice(1).map(row => headers.map((header, index) => {
const key = header.toLowerCase();
return key === "date" ? new Date(row[index]) : parseFloat(row[index]) || row[index];
}))];
}
/**
* Calculates the Relavtive Moving Average (RMA) for a given dataset and period.
*
* @param {array} data - an array where the first column is the dates, and subsequent columns for open, high, low, close and volume.
* @param {number} period The number of periods to calculate the RMA, e.g., 14 for a 14-day RMA.
* @returns {Array} the RMA values along with corresponding dates.
* @customfunction
*/
function RMA(data, period) {
//Check number of arguments
if (arguments.length !== RMA.length) {
throw new Error(`Wrong number of arguments. Expected ${RMA.length} arguments, but got ${arguments.length} arguments.`);
}
const processedData = getData(data);
const dates = processedData.slice(1).map(row => row[0]); // Extract dates
const closePrices = processedData[0].length === 2
? processedData.slice(1).map(row => row[1]) // For 2-column arrays, use the second column
: processedData.slice(1).map(row => row[4]); // Default: use index 4 for close price
// Initialize an array to store EMA values with corresponding dates
let results = [["Date", `RMA(${period})`]]; // Include headers
// Calculate the multiplier for RMA calculation
const multiplier = 1 / period;
// Calculate SMA for the first n data points
let sum = 0;
for (let i = 0; i < period; i++) {
sum += closePrices[i];
}
let sma = sum / period;
// The first RMA
results.push([dates[period - 1], sma]);
// Calculate RMA for the remaining data points
for (let i = period; i < closePrices.length; i++) {
const currentClose = closePrices[i];
const prevRMA = results[results.length - 1][1];
const currentRMA = (currentClose - prevRMA) * multiplier + prevRMA;
// Append the current date and RMA to the results array
results.push([dates[i], currentRMA]);
}
return results;
}Last updated on